Приветствую Вас, Гость! Регистрация RSS
Паровая турбина

Турбогенератор

В зависимости от конструкции первичного двигателя существует два основных типа синхронных генераторов:быстроходные и тихоходные.картинка турбогенератор

Быстроходные генераторы на 3000 и 1500 об/мин предназначаются для непосредственного соединения с паровыми турбинами и называются турбогенераторами.

С увеличением числа оборотов размеры и вес паровой турбины и генератора уменьшаются, что дает ряд экономических преимуществ. В связи с этим в настоящее время широко применяют двухполюсные турбогенераторы на 3000 об/мин.

Синхронизация и принятие нагрузки турбогенератора

После того как турбина развернута до номинального числа оборотов, нужно проверить действие приспособления для изменения числа оборотов (синхронизатора). Убедившись, что оно работает исправно, можно включать генератор на сеть, помня, что работать длительное время без нагрузки турбина не должна во избежание чрезмерного нагрева части низкого давления. Если на данную сеть не работает какой-либо другой генератор, то включение осуществляется очень просто. Включают возбуждение генератора, доводят его напряжение до нормального и включают главный масляный выключатель, после чего поочередно включают масляные выключатели фидеров, передающих энергию к потребителям.

Иначе обстоит дело, когда генератор приключается к сети, на которую уже работают другие генераторы. Включение на параллельную или, как говорят, синхронную работу с другими генераторами должно быть произведено в момент, когда напряжение приключаемого генератора равно напряжению в сети, число периодов в секунду (частота) приключаемого генератора одинаково с частотой уже работающих на сеть генераторов (то есть с частотой сети) и имеет место совпадение фаз напряжения в сети и напряжения приключаемого генератора.

Равенство напряжений определяется по показаниям вольтметров, установленных на распределительном щите и указывающих действительные значения напряжений приключаемого генератора и сети. В случае, если показания вольтметров различны, то напряжение генератора подгоняют к напряжению сети, соответствующим образом регулируя возбуждение генератора.

Как известно, напряжение на зажимах (выводах) генератора переменного тока непрерывно изменяется; оно увеличивается от нуля до некоторого максимального положительного значения, затем уменьшается до нуля, после чего принимает отрицательное значение и, достигнув определенной величины, опять падает до нуля и так далее. Графически эти изменения изобразятся кривой, по форме близкой к синусоиде (рис. 8). Время, в течение которого напряжение проходит все свои положительные и отрицательные значения, называется периодом, а число периодов в секунду- частотой. Обычно применяется частота, равная 50 пер/сек.

Частота определяется выражением

pn/60


где р- число пар полюсов генератора;
      n- число оборотов в минуту;
     60- число секунд в минуте.
Следовательно, равенство частот работающего и приключаемого генераторов будет иметь место при условии, что

 

pn/60=p1n1/60.

 

Это значит, что при равном числе полюсов работающего и приключаемого генераторов, то есть р= p1, должны быть равны и числа их оборотов n= n1. Таким образом, для получения близкого совпадения частот число оборотов приключаемого генератора должно быть возможно точно доведено до числа оборотов работающего генератора.

При большем числе полюсов у работающего генератора число оборотов приклчаемого должно быть соответственно больше, и наоборот.

После того как равенство напряжений и близость частот достигнуты, нужно уловить момент совпадения фаз напряжения в сети и напряжения приключаемого генератора и включить генератор именно в этот момент. Это условие требует некоторого пояснения.

Известно, что напряжение в сети, к которой мы должны приключить генератор, изменяется по кривой, аналогичной изображенной на (рис. 8) Практически почти неизбежно, что напряжение генератора, уже работающего на сеть, и напряжение приключаемого генератора, даже имея равные амплитуды, окажутся сдвинутыми по фазе, то есть будут достигать каждого из своих мгновенных одинаковых значений разновременно (рис.9) Если мы при этом условии соединим в момент М генераторы для параллельной работы, то между зажимами генераторов окажется разность потенциалов, равная (b - a), и через обмотки пойдет ток, который может оказаться даже больше тока короткого замыкания. Указанная разность потенциалов будет изменяться по величине примерно так, как показано на (рис. 10) На этой фигуре кривая е1 изображает напряжение работающего на сеть генератора, кривая

- напряжение приключаемого генератора, а кривая ер- равнодействующую напряжений, которое получается от взаимодействия е1 и е2.

Задача состоит в том, чтобы приключить генератор в такой момент, когда его напряжение и напряжение уже работающего на сеть генератора достигнут своих максимальных значений одновременно, будучи при этом равными и взаимно противоположными(будучи взаимно противоположными в внутренней цепи (в обмотках машины), совпадут по фазе по отношению к внешней цепи тока (сборным шинам)).

В этот момент результирующее напряжение ер будет равно нулю, и включение может быть произведено совершенно безопасно.

Рассматривая диаграмму, представленную на (рис. 10), мы видим, что кривые е1 и е2 имея равные амплитуды, постепенно сдвигаются одна относительно другой. Этот сдвиг вызывается некоторой разностью в числе оборотов генератора, которая практически всегда имеет место до включения на параллельную работу. Соответственно изменяется и амплитуда кривой ер, которая достигает своего максимального значения в момент совпадения одноименных максимальных значений е1 и е2 (точки А и В).

Своего нулевого значения ер достигает в моменты одновременности равных, но взаимно противоположных значений е1 и е2 (точка D) или одновременности нулевых значений (точка С).

Таким образом, приключать генератор можно в моменты, соответствующие точкам С и D. Для определения этих моментов между соединяемыми шинами включают электрические лампы, называемые фазовыми лампами (рис. 11). Ток, проходящий в этих лампах, вызывается равнодействующим напряжением ер. Очевидно, что в соответствии с изменениями ер будет изменяться накал фазовых ламп, которые будут ярко светиться в моменты, соответствующие точкам А и В, и постепенно погасать с уменьшением ер. При этом, чем ближе совпадают скорости вращения генераторов, тем продолжительнее будут периоды вспыхивания и затухания фазовых ламп, так как тем реже будет иметь место совпадение фаз е1 и е2. Схема параллельного соединения двух трехфазных генераторов с включением фазовых ламп показана на (рис. 12). Как видно из этой схемы, обе фазовые лампы при включении выключателей В3 и В4 будут вспыхивать одновременно.

Фазовые лампы не дают возможности точно уловить момент, когда ер становится равным нулю, так как они перестают светиться уже с того момента, когда ер становится недостаточным для их накала, но имеет еще существенную величину. Поэтому в параллель к фазовым лампам обычно приключают вольтметр, по которому можно более точно наблюдать разность потенциалов между соединяемыми шинами. В таком случае включение генератора производят в момент, когда вслед за потуханием фазовой лампы стрелка вольтметра займет нулевое положение. Предварительно добиваются возможно более продолжительных периодов загорания и потухания фазовых ламп, регулируя от руки или со щита число приключаемого генератора посредством приспособления для изменения числа оборотов турбины (синхронизатора).

Эксплуатация турбогенератора

Величина длительно допускаемой (без ограничения времени) нагрузки генератора зависит: 1)температуры охлаждающего воздуха; 2)коэффициента мощности с которым работает генератор; 3)длительно допускаемой температуры нагрева обмоток и стали статора, а также обмоток ротора.

Большинство генераторов, установленных на электростанциях, рассчитано на отдачу номинальной мощности при температуре входящего охлаждающего воздуха +35 или +400 С . При этом нагрев воздуха в генераторе (температурный перепад) в зависимости от типа генератора обычно составляет не более 25-300 С, соответственно чему температура выходящего из генератора воздуха обычно не превышает +60-700 С.

Длительно допускаемые температуры нагрева обмоток и стали различны для генераторов различного типа и зависят от рода их изоляции. Точные значения температур указывают в станционных инструкциях для каждого генератора, однако в большинстве случаев они не должны превышать 100-120 0 С для статорных обмоток и 120-145 0 С для роторных обмоток. Температура стали в месте расположения обмотки не должна быть больше допускаемой температуры последней. При этом предполагается, что температура нагрева обмоток и стали статора измеряются термодетекторами (термометрами сопротивления), заложенными между стержнями обмоток и на дно пазов статора, а температура нагрева обмоток ротора определяется по методу изменения сопротивления при нагреве.

фото турбогенератор и возбудитель 50 мвт

Изоляция генераторов постепенно изнашивается или, как принято говорить, стареет. Старение изоляции происходит в следствии воздействия на нее электрического поля, под действием различных механических нагрузок (вибрации машины, электродинамических действий токов к. з., трения струи охлаждающего воздуха и т. д.). В следствии ее загрязнения, увлажнения, окисления кислородом воздуха и ряда других причин. Особенно большое влияние на старение изоляции оказывает ее нагрев - чем выше температура нагрева изоляции, тем быстрее она разрушается, тем меньше ее срок службы. Например, если взять наиболее распространенную для статорных и роторных обмоток изоляцию класса В (изделия из слюды, асбеста и других минеральный материалов со связующими материалами на шеллаке), то оказывается, что если при нагреве до температуры 1200 С срок службы ее составляет около 15 лет, то при нагреве до 1400 С срок службы ее резко уменьшается почти до 2 лет. Значительный нагрев изоляции приводит к уменьшению ее эластичности, она становиться хрупкой, электрическая прочность ее резко уменьшается. Так же изоляция класса В при температуре нагрева порядка 1050 С стареет медленно и срок службы ее становится более 25-30 лет.
Из сказанного следует, что в эксплуатации при любых режимах работы генераторов нельзя допускать нагрева их изоляции свыше установленных для них предельно допустимых температур.

Если температура входящего в генератор воздуха меньше номинальной (соответственно +35 или +400 С), то условия охлаждения генератора улучшаются и его мощность может быть несколько увеличена по сравнению с номинальной. Наоборот, если температура входящего воздуха выше номинальной, то мощность генератора должна быть несколько уменьшена. Значения допускаемых нагрузок генераторов при различных температурах входящего воздуха указываются в станционных и типовых инструкциях на генераторы.

Наибольшая допускаемая температура входящего в генератор воздуха +500 С, а выходящего (горячего) +750 С.

 

Для большинства генераторов номинальный коэффициент мощности cos f составляет от 0,8 до 0,9. От величины коэффициента мощности, с которым работает генератор, зависит величина тока возбуждения генератора. При одной и той же нагрузке генератора в киловольтамперах, чем меньше коэффициент мощности, тем больше ток возбуждения, тем больше загрузка ротора. Работа генератора с коэффициентом мощности меньше номинального приводит к неполному использованию мощности агрегата.

 

Если напряжение на зажимах генератора отличается от номинального не более чем на 5%, то генератор может быть загружен на номинальную мощность. Допускаются следующие предельные повышения напряжения на зажимах: для генераторов 6,6 кв - 10%, а для генераторов 10,5 кв и выше - 5%. В случае увеличения напряжения на зажимах генераторов до 6,6 кв и ниже более чем на 5% нагрузка их должна быть несколько уменьшена. Объясняется это тем,что в следствии недопустимости перегрузки ротора повышенное напряжение на зажимах генератора может быть получено только за счет уменьшения его нагрузки Наоборот, в случае уменьшения напряжения на зажимах тех же генераторов более чем на 5%, нагрузка их может быть несколько увеличена.

Несимметричная нагрузка фаз приводит к наведению токов в демпферных обмотках и к перегреву последних. Поэтому следует стремиться обеспечить равномерную нагрузку фаз генератора. Если турбогенераторы имеют роторы с капами, то наибольшая не симметрия нагрузки не должна превышать 10%; при роторах с проволочными бандажами не симметричная нагрузка не допускается.

Генераторы, присоединенные к сети с незаземленными нейтралями или к компенсированной сети (с дугогасящими катушками в нейтралях), могут продолжать работу при однофазных замыканиях на землю в сети. При этом длительность такого режима не должна превышать: для генераторов напряжением 6,6 кв и ниже - 2 часа; а для генераторов напряжением 10,5 кв - 1 часа. Ток замыкания на землю должен быть не более 50 А.

         Далее  ► ► ►                              Наверх                               Главная страница